
Boosting-based Visual Tracking using Structural
Local Sparse Descriptors

Yangbiao Liu, Bo Ma, Hongwei Hu, and Yin Han

Beijing Laboratory of Intelligent Information Technology,
School of Computer Science and Technology,

Beijing Institute of Technology, Beijing 100081, China

Abstract. This paper develops an online algorithm based on sparse rep-
resentation and boosting for robust object tracking. Local descriptors of
a target object are represented by pooling some sparse codes of its local
patches, and an Adaboost classifier is learned using the local descrip-
tors to discriminate target from background. Meanwhile, the proposed
algorithm assigns a weight value, calculated with the generative model,
to each candidate object to adjust the classification result. In addition,
a template update strategy, based on incremental principal componen-
t analysis and occlusion handing scheme, is presented to capture the
appearance change of the target and to alleviate the visual drift prob-
lem. Comparison with the state-of-the-art trackers on the comprehensive
benchmark shows effectiveness of the proposed method.

1 Introduction

Visual tracking is an important problem in computer vision and has a wide
range of applications in surveillance, robotics, human computer interaction, and
medical image analysis. Although steady progress has been made to the speed,
accuracy and robustness of object tracking in recent years, it is still a difficult
task due to appearance changes of a target object caused by some factors such as
illumination variation, occlusion, background clutter, pose variation and shape
deformation.

A lot of tracking methods have been proposed to deal with the challenges
mentioned above, and readers can refer to the survey papers [1, 2] and a recent
benchmark [3]. Most recent tracking algorithms can be roughly categorized as
either generative or discriminative approaches. Based on the appearance model
of target object, generative tracking methods search the most similar region with
the best matching score by some metric. These methods update target appear-
ance model dynamically to make the model fit for the target appearance changes
and reduce the drifting problem. Ross et al. [4] learned the dynamic appearance
of the target via incremental low-dimensional subspace representation to adapt
online to changes of target appearance. Recently, numerous tracking algorithms
based on sparse representation [5–8] have been proposed due to its robustness to
occlusion and noise. In [6], a tracking algorithm was developed with structural

2 Y. Liu et al.

local sparse appearance model, using both partial information and spatial infor-
mation of the target with alignment-pooling method. Wang et al. [9] proposed a
least soft-thresold squares tracking algorithm by modeling the error term with
the Gaussian-Laplacian distribution. However, background information that is
critical for effective tracking isn’t considered in these generative models.

Discriminative tracking methods [10–14] usually treat tracking as a binary
classification task which separates the object from its surrounding background.
These methods first train a classifier in an online manner, then the classifier is
applied to candidate targets sampled from next frame. Babenko et al. [10] used
multiple instance learning (MIL) which put the positive and negative samples
into some positive and negative bags respectively to learn a discriminative model
to solve ambiguity problem. Kalal et al. [12] developed a semi-supervised learning
approach in which tracking results were regarded as unlabeled and positive and
negative samples were selected with structural constraints. Zhang et al. [13]
utilized a random sparse compressive matrix to reduce dimensionality of Haar-
like features, and then trained a naive Bayes classifier with the low-dimensional
compressive features. Discriminative trackers are usually more robust against
appearance variations than generative trackers under complicated environments,
because discriminative trackers take background information into account. Some
hybrid methods that combine generative approach and discriminative approach
to get a more robust result were proposed, such as [15–17].

Recently, sparse representation has attracted considerable interest in object
tracking due to its robustness to occlusion and image noise etc. Moreover, a
large number of experiments suggest that sparse representations are effective
models to account for appearance change. In this paper, we present an online
visual object tracking algorithm using local sparse appearance representation
and an Adaboost classifier. The proposed method samples overlapped local image
patches inside the object region and then represents each image patch with its
sparse code. Different from [18] which represents a target by concatenating the
sparse codes of all image patches, our method represents a target using some local
descriptors. Each local descriptor is represented by pooling several sparse codes
selected from all sparse codes of the target. And then, an Adaboost classifier can
be trained using the local descriptors of positive and negative samples collected
in the first several frames. A candidate target has a classification score via the
Adaboost classifier, but the classification score is not accurate if the candidate
target experiences great appearance variations, so the classification score should
be adjusted. The proposed algorithm assigns a weight value to each candidate
target to adjust its classification score, and the weight value is calculated by
structural reconstruction error of the candidate target. In addition, a template
update strategy is applied to capture the appearance change of the target.

2 Proposed Tracking Algorithm

In this section, the proposed tracking algorithm is described in detail. We first
show how the local descriptors of target are represented with local sparse codes.

Boosting-based Visual Tracking using Structural Local Sparse Descriptors 3

Next, we give a description of training classifier and calculating weight of can-
didate target. The update strategy of template and classifier is then introduced.

2.1 Local Descriptors Representation by Local Sparse Codes

Given an object image I, we can extract a set of overlapped local image patches
X = {xi|i = 1, 2, · · · , N} ∈ Rd×N inside the target region with a sliding window,
where xi is the i-th column vectorized local image patch extracted from image
I, d is the dimension of the image vectors and N is the number of local patches.
If we have an image set of templates T = [T1, T2, · · · , Tn], we extract local
image patches from T in the same way mentioned above, and then a dictionary
D = [d1, d2, · · · , dN×n] ∈ Rd×(N×n) used to encode local patches of candidate
targets can be obtained, where n is the number of templates. Each item of the
dictionary is a d-dimensional vector corresponding to a local patch extracted
from T . The process of constructing dictionary is similar to [6] that demonstrates
the advantage of constructing dictionary in this way.

The first n (n=8) frames are tracked using other tracking algorithm and the
tracking result (normalized to 32 × 32) of each frame is treated as a template,
then we obtain the set of templates T .

Each local image patch xi in X can be encoded with the dictionary D by
solving

min
αi

∥xi −Dαi∥22 + λ∥αi∥1, (1)

where αi ∈ R(N×n)×1 is the sparse code, corresponding to local patch xi. λ
is a regularization parameter that controls sparsity and reconstruction error.
Then the sparse coefficient matrix A of the candidate X can be obtained, i.e.
A = [α1, α2, · · · , αN] ∈ R(N×n)×N .

In order to fully describe the candidate X, we generate some local descriptors
for X with the sparse coefficients. Detailed process is as follows: Given a can-
didate object region X, we can extract a set of overlapped local image patches
(denoted as x1, x2, · · · , xN), and calculate a sparse code for each local patch ac-
cording to Eq.1. We select M local patches from all N local patches of the object
region randomly (denoted as xi1 , xi2 , · · · , xiM) and pool the sparse codes of the
selected local patches using average-pooling method (see Eq.2). Then, we get a
local descriptor of the object region, fi ∈ R(N×n)×1. If different local patches are
selected, we can obtain different local descriptors. Therefore, the object region
can generate m (m = CM

N) local descriptors in total.

fi =
1

M

M∑
j=1

αij (2)

where αij is the sparse code of the local patch xij .
In [19], in order to represent target with local sparse codes, authors use

average pooling method for all sparse codes of the target to generate a vector.
However, the strategy ignores the spatial layout of local patches. In our paper,
each local descriptor which is generated by several sparse codes with average
pooling method can keep spatial information to some extent.

4 Y. Liu et al.

2.2 Classifier Learning with Local Descriptors

Adaboost classifier is selected as our classifier for making the best of local de-
scriptors. To initialize the classifier, we need to get training sample set S which
is composed of Np positive samples and Nq negative samples from the first
n frames. We draw p (p=9) positive samples around the tracking result of each
frame via perturbation of a pixel around the target position, thenNp (Np = n×p)
positive samples are obtained. We selectNq negative samples from the n-th frame
further away from the target location with a Gaussian perturbation. Using the
same way as Sec.2.1, each training sample can generate m local descriptors. Af-
ter that, our Adaboost classifier is learned with the local descriptors of training
sample set.

Some training examples are randomly selected from entire training set S
according to their weight. Each selected example has m local descriptors, so we
can train m weak classifiers based on these local descriptors of selected examples.
Next, the best weak classifier of m weak classifiers is selected (having the lowest
classification error) according to the classification error of the weak classifier
that is estimated to entire training set S. We denote the best weak classifier as
h1 (x). Then, all training samples of S are re-weighted so that samples that are
misclassified can get more weight. Carrying out the process repeatedly, we can
receive some weak classifiers h2 (x) , · · · , hk (x). The final strong classifier H (x)
is as follow,

H (x) =
k∑

i=1

ρihi (x), (3)

where ρi is the weight of hi (x).
In this paper, we use linear classifier as weak classifier that is calculated by

solving the following optimization problem [18],

w∗ = argmin
w

1

L

L∑
i=1

log
(
1 + e−yiw

T z′
i

)
+

η

2
∥w∥22 , (4)

where w is the classifier parameter, L is the number of selected training examples,
z′i = [zTi , 1]

T and zi ∈ R(N×n)×1 is a local descriptor, yi represents the property
of the local descriptor zi, i.e., +1 for positive training example and -1 for negative
training example, η is a regularization term.

2.3 Weight Calculation Based on Reconstruction Error

We draw some samples around the target location in the previous frame as the
candidate targets of current frame and each candidate target has a classification
score with the strong classifier H (x). A simple approach is that the candidate
target with the largest score is treated as tracking result of current frame. How-
ever, the classification result is not accurate when the target experiences great
appearance variations, because the samples used to train classifier are sampled
from the previous frames. In order to improve the accuracy of result, we assign

Boosting-based Visual Tracking using Structural Local Sparse Descriptors 5

a weight to each candidate target to adjust its classification score. The weight
value of a candidate target is calculated based on reconstruction error under
the dictionary and reflects the similarity between the candidate target and tem-
plates.

From the Sec.2.1, we know that the dictionary can be denoted as

D =
[
d1, · · · , dN , dN+1, · · · , d2N , · · · , d(n−1)N+1, · · · , dnN

]
∈ Rd×(n×N). (5)

If the candidate X is perfect, the local image patch xi in X should be represented
well by sub-dictionary Di =

[
di, dN+i, · · · , d(n−1)N+i

]
∈ Rd×n, 1 ≤ i ≤ N and

the sparse code under Di is denoted as βi =
[
αi
i, α

N+i
i , · · · , α(n−1)N+i

i

]T
∈ Rn×1

where αj
i is the j-th item of αi. The reconstruction error εi of the local image

patch xi under Di can be calculated by

εi =
∥∥xi −Diβ

i
∥∥2
2
. (6)

For purpose of calculating the reconstruction error more conveniently, Eq.6 can
be rewritten as follow,

εi = ∥xi −D (ωi ⊗ αi)∥22 , (7)

where αi ∈ R(N×n)×1 is the sparse code of xi under dictionary D, ⊗ is the
element-wise multiplication,

ωi =
[
ω1
i , ω

2
i , · · · , ω

(N×n)
i

]T
∈ R(N×n)×1, (8)

and

ωj
i =

{
1
0

, j = i, i+N, · · · , i+ (n− 1)N
, others

. (9)

Our method of calculating reconstruction error is motivated by the paper [6].
The main advantage of the method is that it takes spatial layout between local
patches into account. In order to make full use of the sparse code αi, we add a
penalty term ∥D · ((1− ωi)⊗ αi)∥1 to Eq.7, so Eq.7 can be rewritten as follow,

εi = ∥xi −D (ωi ⊗ αi)∥22 + γ∥D · ((1− ωi)⊗ αi)∥1, (10)

where γ controls the strength of the penalty term. If xi can be represented well
by sub-dictionary Di, the penalty term will be very small, otherwise very large.

After reconstruction errors of all patches in candidate X are obtained, the
weight W of X can be calculated by

W =
N∑
i=1

exp (−βεi), (11)

where β is a constant and N is the number of local patches in X.
When partial occlusion happens to target, the occluded patches may have

large reconstruction errors, but the other patches still have small reconstruction
errors, so the weight of the target still keep a relative big value. If a candidate is
bad, its weight is smaller than target because each patch of the bad candidate
has large reconstruction error.

6 Y. Liu et al.

2.4 Template and Classifier Update

Templates should be updated dynamically to adapt to appearance changes. In
our work, each template Ti has a weight ai and its initial value is 1. After getting
the target of each frame, we update the weight of each template via ai = ai ·e−θ,
where θ is the angle between Ti and target. Template update is carried out every
t (t=5) frames and we choose the template with the least weight to be replaced
by a new template. The process mentioned above is similar to [5] to some extent.

In [6], authors use sparse representation and incremental subspace learning
to reconstruct a new template and then exploit it to replace an old template. It
is efficient but it still has a problem. Before a new template is reconstructed, the
tracking results are employed to incrementally update the eigenbasis vectors.
If noise or occlusion exists in tracking results, the updated eigenbasis vectors
will degenerate gradually. Therefore, the occlusion in tracking results should be
handled firstly. In this paper, we use the same way as [9] to handle the occlusion
in tracking results.

After getting the target of each frame, we reconstruct the target by

[ẑ, ŝ] = argmin
z,s

1

2
∥ȳ − Uz − s∥22 + λ1∥s∥1, (12)

where ȳ = y − µ, y represents the observation vector, U is composed of PCA
basis vectors, µ is the mean vector, z denotes the coefficients of ȳ under U and
s is the noise term. Then y is reconstructed by

yir =

{
yi , si = 0
µi , si ̸= 0

, (13)

where yir denotes the i-th item of yr which is the reconstructed observation vec-
tor. The reconstructed observation vector is collected and then we incrementally
update U and µ.

When template needs to be updated (every t frames), we firstly compute
the coefficient ẑ of current observation vector by Eq.12, then reconstruct a new
template by

T ∗ = Uẑ + µ, (14)

where T ∗ is the new template used for updating the template with the least
weight.

We draw p (p=9) positive samples around the tracking result of each frame
via perturbation of a pixel, then replace some old positive samples, and update
the negative samples every t frames via drawing some samples further away from
the target location. The Adaboost classifier is then retrained by the updated
training sample set.

2.5 Object Tracking by Particle Filter

Our tracking algorithm is implemented based on particle filter framework. Let
xt represents the target state variable and z1:t = {z1, z2, · · · , zt} denotes the

Boosting-based Visual Tracking using Structural Local Sparse Descriptors 7

observations up to time t. xt can be estimated by x̂t = argmax
xt

p (xt|z1:t), where
p (xt|z1:t) is the posterior probability and can be computed by Bayesian theorem,

p (xt|z1:t) ∝ p (zt|xt)

∫
p (xt|xt−1) p (xt−1|z1:t−1)dxt−1, (15)

where p (xt|xt−1) is a dynamic model and p (zt|xt) is an observation model. In
our algorithm, the target motion is modeled by the affine transformation with
six parameters. We apply a Gaussian distribution p (xt|xt−1) = N (xt;xt−1, Σ)
to represent the dynamic model, where Σ is a diagonal covariance matrix. The
observation model is constructed by

p (zt|xt) ∝ W ·H (x) , (16)

where H (x) is the classification score of a candidate and W is the weight.

3 Experimental Results

Our tracking algorithm is tested on 51 challenging videos provided with the re-
cent benchmark [3], and compared with 12 state-of-the-art trackers which show
the best performance on the benchmark. The trackers used for comparison are:
Struck [11], SCM [15], TLD [12], ASLA [6], CXT [20], VTD [21], VTS [22], CSK
[23], LSK [19], DFT [24], LOT [25], OAB [26]. For convenience, we directly use
the results of these trackers provided with [3] to conduct comparative experi-
ments with our results.

We use the precision plot and success plot [3] to measure the overall per-
formance. The precision plot indicates the percentage of frames whose center
location error (the distance between center location of tracking result and that
of ground truth) is less than a given threshold distance. The precision score of
each tracker is represented with the score under the threshold = 20 pixels. The
success plot demonstrates the radios of successful frames whose bounding box
overlap is larger than a given threshold. The AUC (area under curve) of each
success plot is used to measure the trackers.

3.1 Experiments Setup

The proposed algorithm is implemented in MATLAB R2012b and runs at 1.1
frames per second on an Intel Core i7 3.4GHz with 4G memory. The number
of templates is 8, training samples and candidate targets are all normalized to
32× 32 pixels, and then 9 overlapped 16× 16 local patches are extracted within
the region with 8 pixels as step length. When representing the local descriptors
with local sparse codes, we select 3 local sparse codes from 9 local sparse codes
to carry out average pooling, then can get 84 local descriptors. For learning
classifier, we collect Np = 72 (9 positive samples per frame and 8 consecutive
frames) positive samples and Nq = 150 negative samples. We select 2/3 samples
randomly from all training samples to get 84 weak classifiers, and then select

8 Y. Liu et al.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Precision plots

Ours [0.686]
Struck [0.654]
SCM [0.648]
TLD [0.601]
VTD [0.574]
VTS [0.574]
CXT [0.570]
CSK [0.541]
ASLA [0.530]
LOT [0.519]
OAB [0.503]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots

Ours [0.509]
SCM [0.498]
Struck [0.472]
TLD [0.434]
ASLA [0.433]
CXT [0.424]
VTS [0.415]
VTD [0.415]
CSK [0.396]
LSK [0.390]
DFT [0.382]

Fig. 1. Precision plots and success plots over all 51 video sequences. The legends in
left Fig and right Fig shows the precision scores and AUC scores for each tracker,
respectively.

the best weak classifier. After repeat 100 times, we obtain 100 candidate weak
classifiers and the number of chosen weak classifier is set to 45. The templates
and the Adaboost classifier are updated every 5 frames.

The other parameters are set as follows. The variable λ in Eq.1, η in Eq.4, γ in
Eq.10, β in Eq.11 and λ1 in Eq.12 are set to 0.01, 0.1, 0.01, 5 and 0.1 respectively.
The affine transformation with six parameters is fixed to [8, 8, 0.005, 0, 0, 0]. The
number of particles is set to 600. All the parameters mentioned in this section
are fixed for all sequences.

3.2 Overall Performance

Fig.1 shows the precision plots and success plots which illustrate the overall
performance of our tracker and the competing trackers on 51 videos. For precision
plots, we rank the trackers according to the result at error threshold of 20 pixels.
For success plots, the trackers are ranked as the AUC scores. The precision scores
and AUC scores for each tracker are shown in the legend of Fig.1. Only the top
10 of the competing trackers and our tracker are displayed for clarity.

From Fig.1, we can see that our tracker, Struck and SCM perform well, but
our tracker achieves the best performance. In precision plot, our algorithm per-
forms 3.2% better than Struck, 3.8% better than SCM. When the error threshold
is reduced to 10 pixels, the SCM performs better than Struck but our method
still performs best. If the error threshold is set to 5 pixels, our tracker and the
SCM perform favorably compared to other trackers. In success plot, our tracker
outperforms SCM by 1.1% and Struck by 3.7%. When given a specific overlap
threshold (e.g. 0.5), our method still achieves the best performance. We can also
observe that SCM achieves higher precision when the error threshold is relatively
small and higher success rate when the overlap threshold is relatively large. This
is because SCM integrates holistic templates and local representations based on
sparse code to handle appearance variations. Struck achieves higher precision

Boosting-based Visual Tracking using Structural Local Sparse Descriptors 9

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Background Clutters

Ours [0.603]
CSK [0.585]
Struck [0.585]
SCM [0.578]
VTS [0.578]
VTD [0.571]
LOT [0.529]
DFT [0.507]
LSK [0.504]
ASLA [0.496]
OAB [0.446]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

In−Plane Rotation

Ours [0.625]
Struck [0.612]
CXT [0.602]
VTD [0.597]
SCM [0.595]
VTS [0.576]
TLD [0.574]
CSK [0.541]
LSK [0.525]
ASLA [0.508]
LOT [0.503]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Deformation

Ours [0.661]
SCM [0.583]
Struck [0.514]
DFT [0.507]
VTD [0.496]
TLD [0.495]
VTS [0.483]
LOT [0.480]
OAB [0.467]
CSK [0.467]
LSK [0.466]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Occlusion

SCM [0.638]
Ours [0.627]
Struck [0.560]
TLD [0.552]
VTD [0.543]
VTS [0.531]
LOT [0.527]
LSK [0.523]
CSK [0.493]
CXT [0.482]
OAB [0.481]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Scale Variation

Ours [0.685]
SCM [0.672]
Struck [0.639]
TLD [0.606]
VTD [0.597]
VTS [0.582]
ASLA [0.552]
CXT [0.550]
OAB [0.541]
CSK [0.503]
LSK [0.480]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Out−Of−Plane Rotation

Ours [0.656]
VTD [0.618]
SCM [0.617]
VTS [0.602]
Struck [0.593]
TLD [0.588]
CXT [0.568]
CSK [0.535]
LSK [0.517]
LOT [0.517]
ASLA [0.515]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

on

Illumination Variation

SCM [0.592]
Ours [0.579]
VTS [0.570]
VTD [0.554]
Struck [0.553]
TLD [0.524]
ASLA [0.513]
CXT [0.491]
CSK [0.474]
DFT [0.452]
LSK [0.437]

Fig. 2. Attribute based performance analysis using precision plots. These attributes
are: background clutters, in-plane rotation, deformation, occlusion, scale variation, out-
of-plain rotation, illumination variation.

scores than SCM, but lower AUC scores than SCM. The main reason is that
Struck only predicts the location of target and ignores scale variation.

Overall, our tracker performs favorably compared to other trackers. The main
reasons are explained as follows. First, the proposed method can generate some
structural local descriptors for target which possess good discrimination. Even if
the target is partial occluded or contaminated, some local descriptors generated
by the parts which are not contaminated still possess good discrimination. Our
method can select some discriminative local descriptors to train classifier, which
ensures the accuracy of the classifier. Second, the weight value is calculated by
structural reconstruction error of the candidate target to adjust the classification
score, and a small weight value is assigned to the bad candidate. Therefore,
the weight model improves the robustness of our tracker. Third, the update
scheme doesn’t introduce heavy occlusion and alleviates the drift problem to
some extent.

3.3 Attribute based Performance Analysis

The performance of a tracker is affected by many factors which can be divided
into 11 attributes [3]. The 51 videos are annotated with the 11 different at-

10 Y. Liu et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
uc

ce
ss

 r
at

e

Background Clutters

Ours [0.465]
Struck [0.458]
SCM [0.450]
VTS [0.428]
VTD [0.425]
CSK [0.421]
ASLA [0.408]
DFT [0.407]
LSK [0.388]
LOT [0.385]
TLD [0.345]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
uc

ce
ss

 r
at

e

In−Plane Rotation

SCM [0.457]
Ours [0.455]
CXT [0.448]
Struck [0.441]
VTD [0.428]
ASLA [0.423]
VTS [0.414]
TLD [0.411]
LSK [0.402]
CSK [0.396]
DFT [0.354]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
uc

ce
ss

 r
at

e

Deformation

Ours [0.499]
SCM [0.447]
DFT [0.421]
Struck [0.389]
VTD [0.375]
TLD [0.369]
ASLA [0.369]
VTS [0.366]
LSK [0.363]
OAB [0.349]
LOT [0.341]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
uc

ce
ss

 r
at

e

Occlusion

SCM [0.486]
Ours [0.465]
Struck [0.411]
VTD [0.402]
LSK [0.400]
VTS [0.397]
TLD [0.396]
LOT [0.375]
ASLA [0.374]
DFT [0.369]
CXT [0.368]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
uc

ce
ss

 r
at

e

Scale Variation

SCM [0.518]
Ours [0.483]
ASLA [0.452]
Struck [0.425]
TLD [0.421]
VTD [0.405]
VTS [0.400]
CXT [0.389]
LSK [0.373]
OAB [0.370]
CSK [0.350]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
uc

ce
ss

 r
at

e

Out−Of−Plane Rotation

Ours [0.473]
SCM [0.469]
VTD [0.433]
Struck [0.430]
VTS [0.424]
ASLA [0.420]
TLD [0.416]
CXT [0.415]
LSK [0.393]
CSK [0.383]
DFT [0.378]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
uc

ce
ss

 r
at

e

Illumination Variation

SCM [0.471]
Ours [0.449]
VTS [0.427]
ASLA [0.427]
Struck [0.425]
VTD [0.418]
TLD [0.393]
DFT [0.370]
CSK [0.364]
CXT [0.363]
LSK [0.361]

Fig. 3. Attribute based performance analysis using success plots. These attributes are:
background clutters, in-plane rotation, deformation, occlusion, scale variation, out-of-
plain rotation, illumination variation.

tributes and one sequence may be annotated with several attributes, then we
can construct 11 subsets based on these attributes. Each subset can be utilized
to evaluate the performance of trackers to deal with a specific challenging factor.

We compare our tracker with other methods on the 51 video sequences with
respect to the 11 attributes mentioned above. Our tracker performs well in 7
of the 11 video subsets: background clutters, in-plane rotation, deformation,
occlusion, scale variation, out-of-plain rotation and illumination variation. Fig.2
and Fig.3 show the precision plots and success plots of our tracker and the
competing trackers in these 7 attributes, respectively. These results show that
our tracker is robust to appearance changes of a target object caused by some
factors. At present, the proposed algorithm can’t handle motion blur well.

On the occlusion subset, the SCM and our method perform favorably com-
pared to other trackers. Our some structural local descriptors which are gener-
ated by the local patches that are not occluded still possess good discrimination;
therefore, our tracker can avoid much influence of occlusion. Meanwhile, the
weight model focuses more on the uncontaminated local patches, which makes
our tracker more accurate. On the background clutters subset, the SCM, Struck
and our method provide much better results. The reason that our method per-
forms well is that our tracker considers the background information and selects

Boosting-based Visual Tracking using Structural Local Sparse Descriptors 11

some discriminative local descriptors to train classifier, which ensures the ac-
curacy of the classifier. On the illumination variation subset, the SCM and our
method perform much better than others. The reason is that the template up-
date strategy, based on incremental PCA and occlusion handing scheme, is able
to capture the appearance change due to illumination variation and alleviate the
visual drift problem. On the deformation subset, our method provides superior
results than others. It may be due to the proposed structural local descriptors
that are robust to the deformation of target. However, for the blurry target,
the proposed method may fail. The main reason is that the blurry local patches
can’t be well represented by the dictionary. Therefore, effectiveness of the sparse
codes is restricted and the pooled local descriptors may lose discrimination.

4 Conclusion

In this paper, we employ sparse codes of local patches to generate local descrip-
tors of object and then an Adaboost classifier is learned with the local descriptors
of training sample set. The classifier is applied to candidate targets to separate
the object from its surrounding background. In order to adapt the classifier to
appearance change of the target, we assign a weight to each candidate target to
adjust its classification score. The weight is computed based on reconstruction
error under generative model and it reflects the similarity between the candidate
target and templates. In addition, a robust template update scheme is applied.
Comparison with the state-of-the-art trackers on the comprehensive benchmark
shows effectiveness of the proposed method.

Acknowledgement. This work is supported in part by the National Natural
Science Foundation of China (No. 61472036) and the Major State Basic Research
Development Program of China (No. 2012CB720003).

References

1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing
Surveys 38 (2006)

2. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A survey of appearance
models in visual object tracking. ACM Transactions on Intelligent Systems and
Technology 4 (2013)

3. Wu, Y., Lim, J., Yang, M.: Online object tracking: A benchmark. In CVPR. (2013)
2411–2418

4. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking.
IJCV 77 (2008) 125–141

5. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In ICCV. (2009)
1–8

6. Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse
appearance model. In CVPR. (2012) 1822–1829

7. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task
sparse learning. In CVPR. (2012) 2042–2049

12 Y. Liu et al.

8. Wang, N., Wang, J., Yeung, D.: Online robust non-negative dictionary learning
for visual tracking. In ICCV. (2013) 657–664

9. Wang, D., Lu, H., Yang, M.: Least soft-thresold squares tracking. In CVPR. (2013)
2371–2378

10. Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple
instance learning. PAMI 33 (2011) 1619–1632

11. Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels.
In ICCV. (2011) 263–270

12. Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: Bootstrapping binary classifiers
by structural constraints. In CVPR. (2010) 49–56

13. Zhang, K., Zhang, L., Yang, M.: Real-time compressive tracking. In ECCV. (2012)
864–877

14. Yao, R., Shi, Q., Shen, C., Zhang, Y., A.Hengel: Part-based visual tracking with
online latent structural learning. In CVPR. (2013) 2363–2370

15. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparsity-based collabo-
rative model. In CVPR. (2012) 1838–1845

16. Dinh, T.B., Medioni, G.G.: Co-training framework of generative and discriminative
trackers with partial occlusion handling. In WACV. (2011) 642–649

17. Liu, R., Cheng, J., Lu, H.: A robust boosting tracker with minimum error bound
in a co-training framework. In ICCV. (2009) 1459–1466

18. Wang, Q., Chen, F., Xu, W., Yang, M.: Online discriminative object tracking with
local sparse representation. In WACV. (2012) 425–432

19. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse
appearance model and k-selection. In CVPR. (2011) 1313–1320

20. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and dis-
tracters in unconstrained environments. In CVPR. (2011) 1177–1184

21. Kwon, J., Lee, K.: Visual tracking decomposition. In CVPR. (2010) 1269–1276
22. Kwon, J., Lee, K.: Tracking by sampling trackers. In ICCV. (2011) 1195–1202
23. Henriques, J., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant struc-

ture of tracking-by-detection with kernels. In ECCV. (2012) 702–715
24. Sevilla-Lara, L., Learned-Miller, E.G.: Distribution fields for tracking. In CVPR.

(2012) 1910–1917
25. Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In CVPR.

(2012) 1940–1947
26. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In

BMVC. (2006)

